Sihirli Fasulyeler
Yükleniyor...
Sayıların Sınıflandırılması (Matematik)
 Bilim   1367   03.02.20   03.02.20   0
sayilar.jpg

Doğal, gerçek, sanal, kompleks, reel, tam, pozitif, rasyonel... Sayıların sınıflandırılması matematikte en fazla kafa karıştıran konulardan bir tanesidir. Bunun en büyük nedeni oldukça fazla sınıfın bulunması, bazı sınıfların birden çok isme sahip olması ve bir sayının birden çok sınıfa dahil edilebilmesidir. Bu makalemde hem basitçe sayı sınıflarını tanımlayacağız hem de bütün sınıflandırmayı grafiksel olarak göreceğiz.

 

İlk olarak grafiklerimize göz atalım ve tanımlarımıza geçelim.

  Sayılar   Sayılar  

Pozitif Sayılar (Sayma Sayıları) : Pozitif tam sayılardan oluşan sınıftır. 1 ,5, 90, 122... Pozitif Tam Sayılar Z ile simgelenir.

 

Sıfır : Sıfır, artı veya eksi olarak nitelendirilmeyen bir tam sayıdır.

 

Doğal Sayılar : Sıfır ve pozitif tam sayıların birleşimi doğal sayılar olarak sınıflandırılmıştır. Doğal sayılar N ile simgelenir.

 

Negatif Sayılar : Negatif tam sayılardan olulan sınıftır. -1 ,-5, -90, -122. Negatif tam sayılar Z- ile simgelenir.

 

Tam Sayılar : Kesirli, köklü veya ondalıklı olarak ifade edilmeyen, edilse bile sonucu kesirsiz, köksüz veya onsalıksız olan sayılardır. -29, -5, 0 , 3, 9 sayıları birer tam sayıdır. Ayrıca 12/4, √9, 25.00 gibi sayılar da tam sayıdır. Çünkü bu sayıların sonucu kesirsiz, köksüz veya onsalıksız olarak yazılabilir. Tam sayılar Z ile simgelenir.

 

Rasyonel Sayılar : İki tam sayının birbirine oranı olarak ifade edilebilen sayılara rasyonel sayılar denir. -12.4 (-124/100), -18/4, -5/2, -√16, -1, 0 , 3/2, √25, 12.25 sayıları rasyonel sayıdır. Rasyonel sayılar tam sayıları kapsar. Çünkü örneğin 5 sayısı 5/1 şeklinde veya 0 sayısı 0/2 şeklinde ondalıklı olarak da yazılabilir. Bu konuda kafa karıştıran kısım 0.33333... sayısı gibi sonsuza giden sayıların sınıflandırılmasıdır. Bu tür sayılarda eğer tekrar eden kısım aynı ise sayı iki tam sayının birbirine oranı şeklinde yazılabilir yani rasyoneldir. 0.333333... sayısı 1/3, 2/6, 3/9... şekillerinde yazılabilir. Rasyonel sayılar Q ile simgelenir.

 

İrasyonel Sayılar : İki tam sayının birbirine oranı olarak ifade edilemeyen sayılara irrasyonel sayılar denir. Örneğin π sayısı irrasyonel bir sayıdır. Çünkü π sayısı 3.14159265359.... şeklinde kendini tekrar etmeden sonsuza kadar gitmektedir. Bu nedenle 2 tam sayı kullanarak π sayısını kesirli şekilde göstermeyiz. Yani π sayısı irrasyonel bir sayıdır.

 

Gerçek (Reel) Sayılar : Rasyonel ve irrasyonel sayı kümesini içine alan sayı sınıfıdır. Tam sayılar, kesirli sayılar, köklü sayılar, pozitif ve negatif sayılar ile sıfır gerçek sayılar sınıfına girer. Gerçek sayılar R ile simgelenir.

 

Sanal (Hayali) Sayılar : Negatif sayıların karakökleri alındığında bir sonuç ortaya çıkması için sanal sayı sistemi geliştirilmiştir. Bu sistemde √-1 sayısının sonucu i harfi ile simgelenir ve bu sayede negatif sayıların karakök sonuçları bulunur. Örneğin √-121 sayısının gerçek sayılar sisteminde bir çözümü yoktur. Sanal sayılar sisteminde sayı incelendiğinde √-121 sayısı √ -1x121 şeklinde ve √-1x√121 şeklinde yazılabilir. Bu nedenle sonuç 11i olur. Sanal sayılar i ile simgelenir.

 

Kompleks (Karmaşık) Sayılar : Hem gerçek hem de sanal sayılardan oluşan sınıftır. Bu açıdan kompleks sayılar bütün sayı sınıflarını kapsar. Genellikle a ve b birer gerçek sayı olmak üzere a+bi şeklinde ifade edilir. Örneğin 7+5i kompleks bir sayıdır.

 

ÖRNEKLER

 

Genelden özele doğru gittiğimizde -169/13 sayısı kompleks (-169/13+0i şeklinde yazılabilir), gerçek, rasyonel, tam (-169/13=-13), negatif tam sayı sınıflarına girmektedir.

 

Genelden özele doğru gittiğimizde 9 sayısı kompleks (9+0i şeklinde yazılabilir), gerçek, rasyonel, tam, doğal ve pozitif tam sayı sınıflarına girmektedir.

 

e (Euler) sayısı 2.71828... şeklinde kendini tekrar etmeden sonsuza kadar giden bir sayıdır. Bu açıdan genelden özele doğru gittiğimizde e sayısı kompleks (e+0i şeklinde yazılabilir), gerçek ve irrasyonel sayı sınıflarına girmektedir.

 

Sonucun ne olduğuna bakmadan sayının sanal bir sayı olduğunu söyleyebiliriz. Çünkü karakök içinde negatif bir sayı bulunmaktadır. Sonuca bakacak olursak √-48 = √-1x√48 = √-1x√16x√3 = ix4x√3 = 4i√3

 

Sayı hem gerçek hem de sanal sınıfını bulundurduğu için kompleks bir sayıdır.

 

 Konuyu geliştirmemize yardımcı ol, konuyu değerlendir.
%100

 

 Bu konuyu paylaş

 

 Yorum yaz, soru sor, geliştirme öner
E-Posta adresiniz yayınlanmayacak.

 

 İlk Yorumu Sen Yap